Skip to main content

Datasets by Microsoft Research now available in the cloud : Microsoft announces open Datasets!

Hey Readers, today I bring forth an exciting news for you all aspiring data scientists and machine learners!

Something new happened in Microsoft Research Blog : 

The Microsoft Research Outreach team has worked extensively with the external research community to enable adoption of cloud-based research infrastructure over the past few years. Through this process, we experienced the ubiquity of Jim Gray’s fourth paradigm of discovery based on data-intensive science – that is, almost all research projects have a data component to them. This data deluge also demonstrated a clear need for curated and meaningful datasets in the research community, not only in computer science but also in interdisciplinary and domain sciences.


Today we are excited to launch Microsoft Research Open Data – a new data repository in the cloud dedicated to facilitating collaboration across the global research community. Microsoft Research Open Data, in a single, convenient, cloud-hosted location, offers datasets representing many years of data curation and research efforts by Microsoft that were used in published research studies.

With data growing at an exponential rate, perceived to be over 150 ZB of data available by 2025, it is now recognized that we need to prioritize bringing processing to data versus relying on data movement through Internet bandwidth that is growing at a much slower pace. We believe that there is real utility in providing an option to bring the processing to the data. Therefore, in addition to providing an option to download the data assets, users can also copy datasets directly to an Azure based Data Science virtual machine.
Now, one may think that Kaggle is still a better source of free datasets, but given Microsoft's new investments in acquiring Github and now competing with Kaggle one can assume that something is brewing in Satya Nadella's mind.

Let me discuss the Pros and Cons of the same.
Pros : 
  • Extensive Categorisation of the datasets for various research field which is cross referred by PhD scholars.
  • Really easy imports in inter microsoft systems.
Cons : 
  • Less Datasets (Bu quality data)
  • Minimal support for local machines with no azure cloud setup.
  • Of course, no API present like that of kaggle that could download the dataset for you within seconds!
So, in my opinion, Kaggle is still the best site for practising your machine learning techniques but Microsoft may have plans for expanding the support in future and that , could be trouble for the current dataset hosting giants.

Let's observe how this new initiative unfolds for either parties. Until then, keep discovering ;)

Uddeshya Singh

Comments

Total Pageviews

Popular posts from this blog

Kaggle Dataset Analysis : Is your Avocado organic or not?

Hey readers! Today, allow me to present you yet another dataset analysis of a rather gluttony topic, namely Avocado price analysis. This Data set  represents the historical data on avocado prices and sales volume in multiple US markets. Our prime objectives will be to visualize the dataset, pre-process it and ultimately test multiple sklearn classifiers to checkout which one gives us the best confidence and accuracy for our Avocado's Organic assurance! Note : I'd like to extend the kernel contribution to Shivam Negi . All this code belongs to him. Data Visualization This script must procure the following jointplot  While a similar joint plot can be drawn for conluding the linearly exponent relations between extra large bags and the small ones. Pre Processing The following script has been used for pre processing the input data. Model Definition and Comparisons We will be looking mostly at three different models, namely ra...

IOT Breakthrough : TensorFlow 1.9 Officially Supports the Raspberry Pi

Hey Readers! Good news for all the "cheap fair power" computer fans, as a result of a major collaboration effort between TensorFlow and Raspberry Pi foundation, one can now install tensorflow precompiled binaries using Python's pip package system !  When TensorFlow was first launched in 2015, they wanted it to be an “ open source machine learning framework for everyone ”. To do that, they needed to run on as many of the platforms that people are using as possible. They have long supported Linux, MacOS, Windows, iOS, and Android, but despite the heroic efforts of many contributors, running TensorFlow on a Raspberry Pi has involved a lot of work. If one is using Rasbian9 they can simply use these 2 commands to install tensorflow on their machine! According to an excerpt from TensorFlow's medium article page :  " We’re excited about this because the Raspberry Pi is used by many innovative developers, and is also widely used in education to ...

5 AI advices you need to implement, from TODAY: DeepMind CoFounder

Data Science and Artificial Intelligence fans, this might be a good day for you. Google DeepMind Cofounder gives a teenage AI fan  pieces of advice, and I think you should know that too! Some artificial intelligence specialists at organizations like Google and Facebook are currently acquiring more cash than venture financiers at Goldman Sachs and J.P. Morgan.  These specialists additionally have the benefit of working in a field of technology that is ready to majorly affect the world we live in.  Be that as it may, for some individuals, it's not clear how to approach landing a job in AI. This week, 17-year-old Londoner Aron Chase asked Shane Legg — the chief scientist and cofounder of DeepMind, an AI lab acquired by DeepMind for a reported £400 million — for five pieces of advice for an AI enthusiast like himself. " Hey Shane I’m currently 17 from London England and am very passionate about AI, also learning about in-depth human needs. What would be the 5 piec...