Skip to main content

Kaggle Dataset Analysis : Is your Avocado organic or not?

Hey readers! Today, allow me to present you yet another dataset analysis of a rather gluttony topic, namely Avocado price analysis.

This Data set represents the historical data on avocado prices and sales volume in multiple US markets.



Our prime objectives will be to visualize the dataset, pre-process it and ultimately test multiple sklearn classifiers to checkout which one gives us the best confidence and accuracy for our Avocado's Organic assurance!

Note : I'd like to extend the kernel contribution to Shivam Negi. All this code belongs to him.

Data Visualization

This script must procure the following jointplot 




While a similar joint plot can be drawn for conluding the linearly exponent relations between extra large bags and the small ones.





Pre Processing

The following script has been used for pre processing the input data.




Model Definition and Comparisons

We will be looking mostly at three different models, namely random forest classifiers, KNN and our good old SVM.

Obviously, the Grid search optimization has been used for best results.

Random Forest Classifier





You can see that our model is giving (false positive) + (false negatives) = 3. Total 3 inaccurate predictions which is pretty awesome.



KNN Classifier




So, the performance drops by a total 0f 0.02, not bad at all!
For The SVM Part, I'd recommend that you visit the kernel itself (Link is at the top)

Conclusion

In the end, I would just like to say that we have tried Random Forest Classifier, KNN and SVM but most efficient among them is Random Forest Classifier giving 100% accuracy, KNN is also not too bad as it has 98% accuracy but Support Vector Classifier(SVC) is not that much efficient in predicting the values having only 54% accuracy for conventional and 100% accuracy for organic type. Recommended Model for prediction of TYPE(coventional and organic categories) columns is Random Forest Classifier.

Comments

Total Pageviews

Popular posts from this blog

IOT Breakthrough : TensorFlow 1.9 Officially Supports the Raspberry Pi

Hey Readers! Good news for all the "cheap fair power" computer fans, as a result of a major collaboration effort between TensorFlow and Raspberry Pi foundation, one can now install tensorflow precompiled binaries using Python's pip package system !  When TensorFlow was first launched in 2015, they wanted it to be an “ open source machine learning framework for everyone ”. To do that, they needed to run on as many of the platforms that people are using as possible. They have long supported Linux, MacOS, Windows, iOS, and Android, but despite the heroic efforts of many contributors, running TensorFlow on a Raspberry Pi has involved a lot of work. If one is using Rasbian9 they can simply use these 2 commands to install tensorflow on their machine! According to an excerpt from TensorFlow's medium article page :  " We’re excited about this because the Raspberry Pi is used by many innovative developers, and is also widely used in education to ...

5 AI advices you need to implement, from TODAY: DeepMind CoFounder

Data Science and Artificial Intelligence fans, this might be a good day for you. Google DeepMind Cofounder gives a teenage AI fan  pieces of advice, and I think you should know that too! Some artificial intelligence specialists at organizations like Google and Facebook are currently acquiring more cash than venture financiers at Goldman Sachs and J.P. Morgan.  These specialists additionally have the benefit of working in a field of technology that is ready to majorly affect the world we live in.  Be that as it may, for some individuals, it's not clear how to approach landing a job in AI. This week, 17-year-old Londoner Aron Chase asked Shane Legg — the chief scientist and cofounder of DeepMind, an AI lab acquired by DeepMind for a reported £400 million — for five pieces of advice for an AI enthusiast like himself. " Hey Shane I’m currently 17 from London England and am very passionate about AI, also learning about in-depth human needs. What would be the 5 piec...