Skip to main content

IOT Breakthrough : TensorFlow 1.9 Officially Supports the Raspberry Pi

Hey Readers! Good news for all the "cheap fair power" computer fans, as a result of a major collaboration effort between TensorFlow and Raspberry Pi foundation, one can now install tensorflow precompiled binaries using Python's pip package system

When TensorFlow was first launched in 2015, they wanted it to be an “open source machine learning framework for everyone”. To do that, they needed to run on as many of the platforms that people are using as possible. They have long supported Linux, MacOS, Windows, iOS, and Android, but despite the heroic efforts of many contributors, running TensorFlow on a Raspberry Pi has involved a lot of work.

If one is using Rasbian9 they can simply use these 2 commands to install tensorflow on their machine!



According to an excerpt from TensorFlow's medium article page : 

"We’re excited about this because the Raspberry Pi is used by many innovative developers, and is also widely used in education to introduce people to programming, so making TensorFlow easier to install will help open up machine learning to new audiences. We’ve already seen platforms like DonkeyCar use TensorFlow and the Raspberry Pi to create self-driving toy cars, and we can’t wait to discover what new projects will be built now that we’ve reduced the difficulty.
Eben Upton, founder of the Raspberry Pi project, says, “It is vital that a modern computing education covers both fundamentals and forward-looking topics. With this in mind, we’re very excited to be working with Google to bring TensorFlow machine learning to the Raspberry Pi platform. We’re looking forward to seeing what fun applications kids (of all ages) create with it,” and we agree!
We’re hoping to see a lot more educational material and tutorials emerge that will help more and more people explore the possibilities of machine learning on such a cost-effective and flexible device."
For those who are thinking what the hell is RaspberryPi:

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to learn how to program in languages like Scratch and Python.

A Simple Program using TensorFlow in Rasbian9:

Comments

Post a Comment

Total Pageviews

Popular posts from this blog

Kaggle Dataset Analysis : Is your Avocado organic or not?

Hey readers! Today, allow me to present you yet another dataset analysis of a rather gluttony topic, namely Avocado price analysis. This Data set  represents the historical data on avocado prices and sales volume in multiple US markets. Our prime objectives will be to visualize the dataset, pre-process it and ultimately test multiple sklearn classifiers to checkout which one gives us the best confidence and accuracy for our Avocado's Organic assurance! Note : I'd like to extend the kernel contribution to Shivam Negi . All this code belongs to him. Data Visualization This script must procure the following jointplot  While a similar joint plot can be drawn for conluding the linearly exponent relations between extra large bags and the small ones. Pre Processing The following script has been used for pre processing the input data. Model Definition and Comparisons We will be looking mostly at three different models, namely ra...

Your help in Fashion : 7 layer CNN at your service (~92% accurate)

Hey Readers! Welcome to yet another post where I play with a self designed neural network. This CNN would be tackling a variant of classical MNIST known as Fashion MNIST dataset  . Before we start exploring what is the approach for this dataset, let's first checkout what this dataset really is. Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. ...